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Abstract. Similar to the case of the spin-lattice coupling coefficients G,  in cubic symmetry, 
in this paper the simple correlations between the coupling coefficients F,, ( F , , ,  Flz and Fd4) in 
a cubic field and the g-factor in cubic and low symmetries have been established, and hence 
a simple and uniform method suitable for calculating the coefficients F ,  for all d1 ions is 
given. As an example, the analytic expressions for F,, for d 3  ions in a cubic field are obtained 
from the high-order perturbation formulae for the g-factor. From these expressions, the 
coefficients F,, for MgO : Cr3- crystals have been calculated. The results are close to the 
experimental values and the errors are, as in the case of G,,, attributed mainly to the fact that 
the local elastic constantss,, in the vicinity of impurity ions are different from the host values. 
The coefficients F,, for MgO : Vz' crystals, in which the local values are very similar to the 
bulk values, are also predicted. The results should be, as shown for the coefficients G,,, closer 
to the experimental values calculated from the bulk elastic constants. This point remains to 
be verified. 

1. Introduction 

The interaction of phonons with paramagnetic spin systems is best characterised by spin- 
lattice coupling coefficients which relate the energy shift in the spin system to the strain 
introduced into the lattice. The coupling tensor elements applicable to the shift of the 
g-factor with strain are the coefficients Fl, and those applicable to the change in zero- 
field splitting with strain are the coefficients GI,. As is well known, these coupling 
coefficients are of importance since they intervene explicitly in the calculation of the 
spin-lattice relaxation time of the magnetic centre [l, 21, as well as in the elucidation of 
the microscopic mechanisms of zero-field splitting and anisotropicg-factor [ 1,3-51. So, 
in the past few decades, a great many theoretical studies have been done to explain these 
coefficients. Usually, these theoretical calculations are directly related to the strain 
tensor elements [4-61. The method is complex and it is sometimes easy to make mistakes. 
In addition, it does not clearly provide the physical meaning of these coefficients. In our 
previous papers [7-111, for the coefficients GI, and G44 in cubic symmetry, a simple and 
uniform method suitable for all d" ions has been established and the clear physical 
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meaning of Gll and G44 can be found. On this basis, we calculated the coefficients Gll  
and G44 in cubic symmetry for d3 ions (V2+ and Cr3+ in MgO crystals [8] and Cr3+ in 
SrTi03 crystal (9)), d5 ions (Mn2+ in MgO and CaO crystals [lo]) and d8 ions (Ni2+ in 
MgO crystals [ 111) from the distinctive complex high-order perturbation formulae of 
zero-field splitting in low symmetries. The calculated results show good agreement with 
the experimental findings. However, for the coupling coefficients Fl, in a cubic field, no 
similar method has been put forward until now. In this paper, as in the case of C,,  we 
shall also provide a simple and uniform method for the calculations of the coefficients 
FL,. As an example, the analytic expressions for Fl, for d3 ions have been derived from 
the high-order perturbation formulae for the g-factor and the point-charge-dipole model 
in accordance with the method. From the expressions, the coefficients FL, for MgO : Cr3+ 
crystals have been calculated by using only two adjustable parameters which were 
obtained from the optical spectra and applied to the calculations of the coefficients GI1 
and G44 [8]. It can be seen that, similar to the coefficients G,, the results of F,, are close 
to but somewhat greater than the observed values. Equally, this is attributed mainly to 
the fact that the local elastic constantss, are smaller than the host values. The coefficients 
F,, for MgO : V2+ crystals are also predicted. Because the local elastic constants are very 
similar to the host values for MgO : V2+, the coefficients F1, should be, as in the case of 
G,, closer to the observed values. This point remains to be verified experimentally. 

2. Formulae for F ,  in cubic symmetry 

During the application of uniaxial stress, the EPR spectra can be described by the spin 
Hamiltonian 

H s  = PSSgH + S6D S .  (1) 

The strain-induced shifts 6gij of the g-factor and 6D,  of the zero-field splitting can be 
expanded in terms of the strain tensor elements eij. For 6gij to first order, 

Fll F12 F12 0 0 0 - 

F12 Fll F12 0 0 0 

F12 F12 Fll 0 0 0 

0 0 0 F 4 4 0  0 

0 0 0 0  F 4 4 0  

0 0 0 0 0 F44.  

e1 1 

e22 

e33 

e13 

e23 

e12 

Obviously, there are only three independent coefficients FI1, F12 and F44 for cubic groups 
because of symmetry requirement. So, these coefficients Fl, can be completely studied 
experimentally and theoretically from three pressure behaviours; usually, they are those 
under the hydrostatic pressure, and the uniaxial stresses along [OOl]  and [ill] directions. 
This is the basis of our investigations. 



Calculation of F0 from the g-factor 2181 

Under the hydrostatic pressure P ( P  > 0), the crystal maintains a cubic symmetry 
and the stress components along the cubic axes are 

x.. = - p X,(i # j )  = 0. (3) 

e,, = - (sI1 + 2s12)P (4) 

Then 

e,(i # j )  = 0. 

6g = 6gjj = - (Fl1 + 2F12)(Sll + 2s12)P. 

dg /dP = [Q/d (In R)l[d (In R ) / W  = - (Fl1+2F12)(s11+2s12) 

From (2), we have 

( 5 )  

so  
(6) 

where R denotes the bonding length. Because 

then 

Fll + 2FI2 = dg/d(lnR). (8) 

When the stress P i s  along the [OOl]  axis, the tetragonal distortions are induced and 
the stress components are 

x 3 3  = - P XI1 = x22 = X,(i # j )  = 0. (9) 

Then 

ell  = e22 = -sI2P e33 = -sllP e i j ( i # j )  = 0. (10) 

Let the axis of fourfold rotation be the z axis; from (2), we obtain 

Fl1 - F12 = 2[J(s, - sll)/aalo (14) 

where the subscript ‘0’ denotes that the differentiation is done for the case of cubic 
symmetry. 
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Similarly, if the stress is along the [111] axis, the trigonal distortions are induced and 
XI] = -P/3; then 

err = - (sll + 2sI2)P/3 e,(i ~ j )  = - s ~ ~ P / ~ .  (15) 
From (2), one can get 

Rotating the coordinate axes to the directions of principal axes (zll C,) for the tensor 6gij ,  
i.e. let the matrix 6gij be diagonal, we have 

(17) 
figL = [m4 - m1 -+ ~ F ~ ~ ) ( s ~ ~  + 2 ~ , ~ ) 1 ~ / 3  

6gil = - [2F44~44 + (Fl1 + 2F12)(~11 + 2~12)]P/3. 

d(g, - SIi>/dP = F 4 4 S 4 4 .  (18) 

d/3/dP = (dT/6)~44. (19) 

F 4 4  = (W6)[a(s, - gll)/aPlo. (20) 

Then 

The trigonal distortions can be represented by the angle /3 which was defined in [7], and 

so, 

From equations (8), (14) and (20), it can be seen that the coupling coefficients F,denote 
the simple correlations between the isotropic and anisotropicg-factors and the distinctive 
distortions of binding length and bonding angles. The simple and clear physical meaning 
of Fij enables us to calculate these coefficients from the formulae for the g-factor in cubic, 
tetragonal and trigonal symmetries very easily. Obviously, the method is simpler than 
the usual calculations directly from the strain tensor elements and would be effective for 
all d" ions. 

Interestingly, if we let FLj+ G,, 6gij-) 6Dij  and consider that G12 = - Gl1/2, and 
D = Dli - D, for axial symmetry, we have 

Fl1 - Fl2 = &[a(g, -gil)/a(~], -+ Gil -GI2 = $GI1 = - f ( a D / d ( ~ ) O .  (21) 

GI1 = - i ( d D / d ( ~ ) O  (22) 

F 4 4  = (fi/6>[a(g, -&$/aPlo -+ (344 = - ( W 6 ) ( a ~ / a P ) o .  (23) 

6 g i  = 2 FVei 6Di  = 2 Gijej (24) 

Then 

and 

Obviously, the formulae for GI1 and G44 are the same as those obtained in our previous 
papers [7-111. Considering that, under the stresses, 

i j 

the above similarity can be understood. The only difference between the coefficients Fl, 
and Gij is Gll + 2GI2 = 0, but Fll + 2F12 = dg/a (In R )  # 0. This is because the tensor 
6 D ,  is traceless, but 6gij is not. 
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3. Analytic expressions for F ,  for d3 ions 

As an example, we apply equations (8), (14) and (20) to d3 ions. In cubic symmetry, 

g = g, - 8g/3A. 

Fll + 2F,, = dg/d(lnR) = - $g/Dq.  

(25) 

(26) 

Then 

In the case of tetragonal symmetry, the high-order perturbation formulae for the 
anisotropic g-factor based on the strong-field coupling scheme can be obtained from 
those in C2 symmetry (let R1 = R2 and cp = 90’) [12]: 

F11 - F12 = - h(l j /A2)[d(35D, + 7 D , ) / d ~ ~ ] o  = $g/Dq.  (28) 
The above result is obtained from the definitions of the tetragonal field parameters D, 
and D ,  [12]. 

From (26) and (28) ,  one can find that 

F11 = - &E/Dq F12 = - #E/Dq. (29) 

g, - gi; = ( 4 f i 5 k / D I  D ~ ) u ‘  - (4Ek/3D:)u. 

F44 = +(Ek/DiD4)(du’/dg)o - (2 f igk /9D?)(dU/ap)o  

For trigonal symmetry, from the high-order perturbation formulae for the g-factor 
based on the strong-field coupling scheme [ 131 , 

so 9 

where D 1  ( = A )  and D 4  (=  A + 12B) are the zero-order energy separations, and 

(30) 

(31) 

(duldg) ,  = ( 1 8 f i / 7 ) e q ( l  +3p/eR, ) (y2) /Ri  + ( 6 0 f i / 7 ) D q  
(32) 
, I  

(du’ /dp) ,  = - Y eq(1 + 3p/eRo)(r2) /R:  + 9 Dq. 
They are calculated in accordance with the definitions of the trigonal-field parameters 
U ,  U’ and from the point-charge-dipole model. q is the ligand charge and p the dipole. 
In the calculations, the value of ,u/eR is kept unchanged under the pressure because 
the dipole p varies in proportion to the bonding length R.  Obviously, our calculated 
equations (29) and (31) for Fii of d3 ions are very simple and convenient. 

4. Calculations of F ,  for Cr3+ and Vz+ in MgO crystals 

Now let us focus attention on the Cr3+ and V2+ ions in MgO crystals. For Cr3+ ions, by 
using the empirical d orbital obtained from the optical spectra data of many crystals 
containing Cr3+ ions [14],  we have 
( r 2 ) ,  = 2.4842 au 

Bo = 920.48 cm-’ CO = 3330.71 cm-I 
Introducing the average covalency reduction factor N ( k  = N 2 ) ,  then 

( r 4 ) o  = 16.4276 au 
(33) 

E d 0  = 240 cm-l. 

( r n )  = N2(rn)o B = N4Bo c= N4Co E d  = N2gdo. (34) 
From the optical spectra of MgO : Cr3+, in [SI we obtained N = 0.954, p = 0.086eR0. 
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Table 1. The spin-lattice coupling coefficients F,, and G, per unit strain for d3  ions in MgO 
crystals. 

MgO : Cr3' MgO : V2+ 

Calculated Observed Calculated Observed 

F11 -0.041 +0.004 rf- 0.010 [15] -0.031 
F,2 -0.071 -0.060 k 0.005 [15] -0.054 
F44 +0.041 +0.029 t 0.006 [15] +0.036 
GI1 (cm-7 [81 1.08 0.6 0.42 0.42 
GM (cm-0 [81 4.86 4.2 3.04 3.0 

Substituting the parameters N ,  p and structural parameter R,( = 2.1 A) for MgO into 
the above formulae, it can be found that (in units of per unit strain) 

F11 = -0.041 F12 = -0.071 F44 = 0.041. (35) 
The results are compared with experimental values in table 1, 

Similarly, for V2+ ions, from the empirical d orbital, we obtain [16] 

(r2)o = 2.565 au 

Bo = 848.5 cm-' 

(r4)o = 13.1132 au 

CO = 3101.9 cm-' gdO = 167 cm-' 

The parameters N and p obtained from optical spectra in [8] are 

N = 0.911 p = 0. 126eR0. (37) 

F11 = -0.031 F12 = -0.054 F44 = 0.036. (38) 

Applying the parameters N ,  p and Ro to  the above formulae, we obtain 

Unfortunately, no measurement has yet been made for MgO : V2+ crystals; the predicted 
values await experimental verification. 

5. Discussion 

In [15] the coupling coefficients FIJ for MgO : C3+ crystals were measured by means of a 
strain-modulated EPR technique 10 years ago, but no satisfactory theoretical explanation 
of them has been given. In [5] this problem was first of all studied using a high-order 
perturbation approach and some progress was made. From the complex expressions [5]  
for F,, it was found that 

F11 == -0.0005 F12 = -0.06--0.07 F44 = 0.036-0.042. (39) 

Clearly, for F12 and Fd4, the results in [5] are close to the experimental values and our 
results (see table 1) but, for F,,, the value is too small. Considering that, for MgO : Cr3+ 
crystals, Gll = 0.6 cm-' and Gd4 = 4.2 cm-', this enables us to predict that F1, - 
from crystal-field theory (IFIJI - G,]/A [15]). So, such a small value of F1, given in [5]  
cannot be regarded as reasonable. It is noteworthy that, in our work, all the calculated 
results for F,, for MgO : Cr3+,  as well as for MgO : V2+ (where Gll = 0.42 cm-', Gd4 = 
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3.0 cm-' and hence I F,,l - In this sense, our result for F,, 
is more reasonable than that in [5]. 

On comparison with the experimental findings, it can be seen that our results are 
close to but somewhat greater than the experimental values. The sources of error, in our 
opinion, are as follows. 

are of the order of 

(i) The point-charge-dipole model and the empirical d orbital are, as is well known, 

(ii) The isotropic and anisotropic g-factor formulae are also approximations. 
(iii) Most importantly, the observed values of F,, are calculated from the assumption 

that the local elastic constants s,, and hence local strains in the vicinity of impurities are 
equal to the host values [15]. However, a great number of theoretical and experimental 
studies show that the assumption is unreliable and unreasonable in the case of charge 
and/or size mismatch [17-191. For example, in [17], it was pointed out that, in MgO 
crystals, for divalent impurities the local strains are close to those in the bulk crystal but, 
when the impurity carries extra charge, large and symmetry-dependent reductions arise. 
In fact, the experimental values of F,! in some literature arising from this assumption are 
also doubted. For instance, for MgO : Cr3+ crystals, in [20], where the hydrostatic 
pressure dependence of the g-factor was studied, it was thought that the assumption 
appears rather dubious in the case of Cr3+ in MgO since the local binding energy is 
probably significantly higher in a cell containing a trivalent cation and the neglect of 
decreased local compressibility certainly decreases the experimental value of 
d[ln(g - go)]/d (In V) (and hence of F,, + 2F12). In [15], where experimental values of 
Fl, for MgO:Cr3+ were given, it was also considered that the local values are not the same 
as the bulk values. Unfortunately, no such calculations about the local values have yet 
been made for Cr-doped MgO; so we made the ad hoc assumption that c,, (local) = c9 
(macroscopic). Obviously, the observed values of F,, based on this assumption are not 
reliable. 

only simple approximations. 

In reality, because the charge of Cr3+ ions is evidently greater than that of Mg2+ ions, 
the local strains and elastic constants sq should decrease and hence the real observed 
values of Fl, increase in accordance with equations (6), (12) and (18). This case is very 
similar to that for the coefficients GI, and Gd4 in MgO : Cr3+ (for clarity, the comparison 
of coefficients GI, is also shown in table 1). This can explain why all our calculated results 
of F,,, as well as of G,, shown in a previous paper [8], are greater than the experimental 
values obtained from the above assumption. In addition, contrary to the value in the 
original literature [15], the calculated value of FI1 is negative (this point is similar to that 
in [5]). The reason is, in our opinion, due to the fact that the tensor dg, is not traceless. 
So, unlike the coefficients GI1 and GI2, the coefficients F,, and F12 may have the same 
sign. The main source giving rise to the different signs of F1, between theory and 
experiment is perhaps also due to the local elastic constants. As has been said before, 
the local compressibility should be smaller than the bulk value and hence the value of 
F,, + 2FI2 has a larger negative value (-0.184 in this work compared with -0.116 in 
[15]). This leads to the fact that the coefficient F,, is negative. 

In order to verify further the opinion that the source of error of F,, in MgO: Cr3+ 
crystals mainly arises because the local elastic constants are different from the host 
values, we predict the coefficients F,, for MgO : V2+ crystals. Considering that the local 
values of sy are very similar to the bulk values because the V2+ and Mg2+ ions have the 
same charge and similar sizes, the calculated values of Fl, for MgO : V2+ should be, as in 
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the case of the coefficients G, [8], closer to the observed values than those for MgO : Cr3+ 
crystals. This point remains to be verified experimentally. 

In conclusion, since the optical spectra and the spin-lattice coupling coefficients Fl, 
and G,, can be explained in a unified way from our very simple methods by using only 
two adjustable parameters, our methods and expressions can be regarded as reasonable 
and would be effective for only similar cases. 
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